Addressing the Double Burden of Malnutrition

Bharati Kulkarni
National Institute of Nutrition, Hyderabad, India
Rising prevalence of diabetes in India

(V Mohan, Diabetologia 2006; 49: 1175-78)
Prevalence of Undernutrition & Overweight/Obesity among Indian Adults

Under nutrition (BMI < 18.5) % Overweight/ obese (BMI > 25)

NFHS-3, 2005-06
NFHS-4, 2015-16
Cardio-metabolic risk in non-obese adults - high fat phenotype

- Reduced muscle mass, visceral mass
- Preserved subcutaneous & abdominal fat
Regional Body Composition of Indian Women from a Low-Income Group and Its Association with Anthropometric Indices and Reproductive Events

Bharati Kulkarni Veena Shatrugna Balakrishna Nagalla K. Usha Rani
National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India

(N = 278)

Mean age: 40 y; BMI: 22 kg/m²; Body fat %: 33
Table: Sensitivity and specificity of different levels of BMI for identifying subjects with high body fat cutoffs of 30 and 35%, using ROC analysis

<table>
<thead>
<tr>
<th>BMI cutoff points</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Correct classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF% of >30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>94.4%</td>
<td>61.2%</td>
<td>84.9%</td>
</tr>
<tr>
<td>20</td>
<td>85.9%</td>
<td>82.5%</td>
<td>84.9%</td>
</tr>
<tr>
<td>21</td>
<td>76.3%</td>
<td>90.0%</td>
<td>80.2%</td>
</tr>
<tr>
<td>22</td>
<td>61.6%</td>
<td>95.0%</td>
<td>71.2%</td>
</tr>
<tr>
<td>23</td>
<td>46.5%</td>
<td>98.7%</td>
<td>61.5%</td>
</tr>
<tr>
<td>24</td>
<td>35.9%</td>
<td>98.7%</td>
<td>54.0%</td>
</tr>
<tr>
<td>25</td>
<td>26.8%</td>
<td>100%</td>
<td>47.8%</td>
</tr>
<tr>
<td>BF% of >35%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>100%</td>
<td>31.8%</td>
<td>61.9%</td>
</tr>
<tr>
<td>20</td>
<td>99.1%</td>
<td>56.4%</td>
<td>73.7%</td>
</tr>
<tr>
<td>21</td>
<td>92.9%</td>
<td>67.3%</td>
<td>77.7%</td>
</tr>
<tr>
<td>22</td>
<td>82.3%</td>
<td>80%</td>
<td>80.9%</td>
</tr>
<tr>
<td>23</td>
<td>69.0%</td>
<td>90.9%</td>
<td>82.0%</td>
</tr>
<tr>
<td>24</td>
<td>57.5%</td>
<td>95.8%</td>
<td>80.2%</td>
</tr>
<tr>
<td>25</td>
<td>46.0%</td>
<td>98.8%</td>
<td>77.3%</td>
</tr>
</tbody>
</table>
BMI Body Fat Relationship

Body fat %

BMI

BMI Body Fat Relationship
Body composition in the tertiles of height (cm)

Mean Body weights
T1 - 44.4 kg, T2 - 49.0 kg, T3 - 53.6 kg
Childhood Growth & Optimal Body Composition

JCK Wells (2007) Early Human Development
Foetal Undernutrition

Brain sparing
Down regulation of growth
Altered body composition
Fat ↑
Muscle ↓

Early maturation
Cortisol ↑

Impaired development
(Liver, pancreas, blood vessels etc.)

Hyperlipidaemia
Hypertension

Insulin resistance

Central Obesity

Type 2 diabetes & CVD

Fall CHD Indian Pediatr 2003; 40:480-502
New Delhi Birth Cohort (born 1969-1972)

- Measured every year to age 21 y
- Body comp assessment at age 30 y
- \(n = 1526 \)

BMI & BMI gain in infancy & early childhood

Related to adult LBM

BMI & BMI gain in late childhood

Related to adult fat mass & central adiposity.

Follow-Up Studies of Nutrition Supplementation Trials
INCAP study - Guatemala (1969-77)

- Assessed impact of nutrition supplementation in pregnancy & early childhood on growth & development
- Follow-up study 1988-89 (age 14-20 y)
- Body composition by anthropometry

Lean Body Mass; N=460

(Martorell R. J Nutr 1995; 125: 1127S-1138S)
To assess the long term impact of early life food supplementation & other environmental risk factors on cardio-metabolic disease risk.

Higher birth weight: I vs C

F1: Adolescence: Intervention group taller by 14 mm

F2: Age: 18-21y

Current diet / PA : more important determinant of LBM

(S Kinra, BMJ 2008; 337: a605 ; B Kulkarni, Am J of Epidemiol 2014;179:700-9)
Maternal undernutrition

↓ size at birth

↓ Childhood growth

Altered body composition

↓ adult LBM & muscle mass

Reduced REE

Impaired fat oxidation

Poor physical activity

Adipose / low muscle mass phenotype

Increased cardio-metabolic risk

Accumulation of risks during life course:
- Sub-optimal diets
- Low intake of milk & other ASFs
- Protein, zinc, calcium, vitamin D

Developmental programming
- Altered hormones
- Epigenetic changes

(Kulkarni B et al. Nutr Rev 2014;72:190–204)
Inter-generational cycle of malnutrition

- Impaired fetal development
- Stunted undernourished mother
- Transition
 - Excess adiposity
- Weight gain
- Undernourished infant and child
 - Long-term effects:
 - ↓ Bone mass, stunting
 - ↓ Muscle mass
 - ↑ Adiposity
 - ↑ Insulin resistance
- Low birth weight ‘Thin-fat’ phenotype

Intervening at each point in the life cycle will help positive change
Optimizing nutrition during life cycle

- **Pre-conception**
 a. Diet diversification by adding MN rich foods

- **During pregnancy**
 b. Fortification of staple foods with MN
 c. Balanced protein energy suppl/multiple MNs

- **Infancy**
 d. For children & pregnant women: Specially formulated fortified food supplements: both micro & macronutrients (EFAs & protein)

- **Early childhood**
 e. For young children: increasing the energy density of foods

Nutrition education & counseling: limited impact when provided without food suppl
Balanced protein energy supplementation during pregnancy & risk of SGA births

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Weight</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IV, Fixed, 95% CI</td>
<td>IV, Fixed, 95% CI</td>
</tr>
<tr>
<td>Blackwell 1973</td>
<td>4.4%</td>
<td>0.56 [0.21, 1.48]</td>
<td></td>
</tr>
<tr>
<td>Ceesay 1997</td>
<td>49.4%</td>
<td>0.65 [0.49, 0.87]</td>
<td></td>
</tr>
<tr>
<td>Elwood 1981</td>
<td>14.8%</td>
<td>0.88 [0.52, 1.50]</td>
<td></td>
</tr>
<tr>
<td>Girija 1984</td>
<td>0.5%</td>
<td>0.09 [0.01, 1.45]</td>
<td></td>
</tr>
<tr>
<td>Mora 1978</td>
<td>7.5%</td>
<td>0.78 [0.37, 1.65]</td>
<td></td>
</tr>
<tr>
<td>Rush 1980</td>
<td>23.3%</td>
<td>0.70 [0.46, 1.07]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>100.0%</td>
<td>0.69 [0.56, 0.85]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 3.31, df = 5 (P = 0.65); I² = 0%

Test for overall effect: Z = 3.56 (P = 0.0004)

*Imdad & Bhutta BMC Public Health 2011, 11(S 3):S17
Kramer, Cochrane Database Syst Rev. 2003*
Meta-analysis of the effects of antenatal MMN vs IFA suppl on birth outcomes in 12 RCTs in developing countries

<table>
<thead>
<tr>
<th>Birth outcome</th>
<th>Pooled effect size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight, g</td>
<td>22.4 (8.3, 36.4)</td>
</tr>
<tr>
<td>Low birth weight (<2500 g)</td>
<td>0.89 (0.81, 0.97)</td>
</tr>
<tr>
<td>Small for gestational age</td>
<td>0.90 (0.82, 0.99)</td>
</tr>
<tr>
<td>Large for gestational age</td>
<td>1.13 (1.00, 1.28)</td>
</tr>
<tr>
<td>Gestational age, days</td>
<td>0.17 (−0.35, 0.70)</td>
</tr>
<tr>
<td>Preterm delivery (<37 weeks)</td>
<td>1.00 (0.93, 1.09)</td>
</tr>
<tr>
<td>Stillbirths</td>
<td>1.01 (0.88, 1.16)</td>
</tr>
<tr>
<td>Perinatal mortality</td>
<td>1.11 (0.93, 1.33)</td>
</tr>
<tr>
<td>Early neonatal mortality</td>
<td>1.23 (0.96, 1.59)</td>
</tr>
<tr>
<td>Late neonatal mortality</td>
<td>0.94 (0.73, 1.23)</td>
</tr>
</tbody>
</table>

Limited impact of MMN supplementation in pregnancy
Estimated reduction in LBW- 11%
MMN Suppl in Pregnancy & Postnatal Growth of Children U5
(Wei-Ping Luo et al. PLOS One 2014; 9: e88496)
Meta-analysis: 9 trials from different countries

Mean diff in weight over time

Mean diff in height over time

No impact on weight, height & WHZ of children
Mumbai Maternal Nutrition Project

MN-rich food supplement pre-conceptionally & throughout pregnancy; ~ 6,700 women from Mumbai slums

Ingredients of a snack (samosa):
- Dry GLV powder
- Milk powder
- Fruit powder
- Fresh GLV
- Dried fruit
- Chick peas
- Sesame seeds

Birth weight effect:
+48 g in women who started suppl ≥ 3 mo before pregnancy
LBW – 34% vs 41%
Impact higher in women with higher BMI at baseline
Macro + Micro N supplementation may be needed in undernourished women.
Maternal body composition assessed by DXA within 1 mo after delivery (N = 76)

Maternal lean mass – strongest correlation with birth weight of the baby.
Dietary intakes of rural women & children in India: low Diet Diversity (NNMB 2012)

<table>
<thead>
<tr>
<th></th>
<th>Cereals Millets</th>
<th>Legumes</th>
<th>Green leafy veg.</th>
<th>Other veg</th>
<th>Roots Tubers</th>
<th>Nuts Oil seeds</th>
<th>Fruits</th>
<th>Meat poultry</th>
<th>Milk Milk products</th>
<th>Fats Oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPNL women (n=9519)</td>
<td>341</td>
<td>28</td>
<td>19</td>
<td>49</td>
<td>70</td>
<td>8</td>
<td>24</td>
<td>21</td>
<td>82</td>
<td>15</td>
</tr>
<tr>
<td>Pregnant (n=322)</td>
<td>354</td>
<td>34</td>
<td>18</td>
<td>47</td>
<td>60</td>
<td>7</td>
<td>32</td>
<td>21</td>
<td>79</td>
<td>16</td>
</tr>
<tr>
<td>Lactating (n=693)</td>
<td>395</td>
<td>34</td>
<td>19</td>
<td>48</td>
<td>70</td>
<td>6</td>
<td>24</td>
<td>16</td>
<td>66</td>
<td>17</td>
</tr>
<tr>
<td>1-3 y children (n=2895)</td>
<td>131</td>
<td>15</td>
<td>7</td>
<td>13</td>
<td>21</td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>86</td>
<td>6</td>
</tr>
</tbody>
</table>

Children (6-23 mo) receiving minimum adequate diet (NFHS 4)
Breastfeeding children : 9%
Non- Breastfeeding children : 14%
ASF supplements increase LBM in Kenyan school children

(544 children; median age 7 y, supplemented for 23 months)

Children with low baseline HAZ:

- Milk-supplemented children gained 1.3 cm ↑ height than controls ($p = 0.05$) &
- 1 cm ↑ height than Meat group

Arm muscle area -
Meat group -
- 80% more ↑ than controls
- Milk and Energy groups - 40% more ↑ than control group.

Positive relation between milk intakes & height of adults (NFHS 3)

Milk consumption ≥ once/week vs < once/week: difference in height +0.65 cm (men) & 0.40 cm (women) (both p<0.001); adjusted for confounders
Intake of other ASFs not associated with height
Cultural importance of milk in India goes beyond nutritive value
SUMMARY

• Double burden of childhood undernutrition & adult-onset adiposity in transitioning societies: public health challenge.

• Sub-optimal LBM- link between these 2 forms of malnutrition

• Positive association of early nutritional status with LBM in later life.

• Nutritional influences throughout the life course impact LBM

• Improving intake of diverse foods especially milk & animal source foods is necessary for optimal body composition

• Interventions focusing on child nutrition should aim at increase in LBM to address the double burden of malnutrition
THANK YOU